Cutting Management of Perennial Hay Crops

Sid Bosworth
Extension Professor
University of Vermont
What is Cutting Management?

- Timing of first harvest in a season
- Frequency of harvest (time interval)
- Timing of the last harvest
- Number of harvests per year
- Cutting height
Importance of Cutting Management

- Directly affects quality, yield and stand life
- Which influences animal performance and reproduction
- Which dictates the % of haycrop in diet
- Which affects grain supplementation and costs
- And the reliance on annual forages such as corn silage and/or purchased hay/haylage
- Which affects nutrient imports on the farm
- Ultimately impacting farm profitability
An important goal in most forage programs is to maximize economic yield of nutrients while insuring stand persistence.
Cutting Management Strategies

Considerations

- Forage quality goals on the farm
- Yield and stand life goals/plans
- Land suitability and soil quality
- Forage species/varieties grown
- On-farm verses custom harvesting
- Machinery/labor availability
- Types of forage and storage systems
- Land availability (takes more land for high quality programs)
Forage Quality Needs of Cattle and Horses

Cutting management should be based on desired quality.

- Nursing mare
- Hard-working horse
- DAIRY, 1ST TRIMESTER; DAIRY CALF
- Brood mare
- Working horse
- DAIRY, LAST 200 DAYS; HEIFER, 3–12 MO.; STOCKER CATTLE
- Idle horse
- HEIFER, 12–18 MO.; BEEF COW WITH CALF
- HEIFER, 18–24 MO.; DRY COW
- RELATIVE FEED VALUE
Focus on the First Harvest

• The first cutting has the highest potential for having the most digestible forage.

• It also has the highest risk of losing quality when cutting is delayed.

• Sets the stage for the rest of the season.

• Must have equipment ready to go!
Most Common Factors Affecting Harvest Decisions

- Calendar date (time)
- Stage of plant maturity
- Weather
Alfalfa Cutting Management
Alfalfa Cutting Management

Source: Adapted from Brink and Marten, University of Minnesota, 1989
Alfalfa Cutting Management

Some Generalizations for New England:

• Quality drops the most rapid during the first two cuttings, so harvest must be timely.

• For high quality, take first cutting by bud stage

• Take the second cutting at bud stage which is often 28 to 33 days after the first.

• Allow a longer interval between 2\(^{nd}\) and 3\(^{rd}\) harvests to rebuild food reserves (10–25\% bloom or about 40 to 45 days interval).
The maturity rate of alfalfa is very responsive to temperature so be ready to cut early if an early, warm spring. If it is a cold, cloudy spring that significantly delays maturity, it may be best to cut by a target date even if the stand has not reached bud stage. Target dates vary across New England from the end of May in southern, lower elevation regions to the 2nd week in June in northern, higher elevation areas.
Alfalfa Cutting Management

Summer Harvests:

- For summer harvests, cut earlier if conditions such as dry or hot weather promotes early maturity.

- Cut earlier if stand is infested with potato leaf hopper and/or showing signs of “hopper burn” or if there are significant leaf diseases that detract quality.
Alfalfa Cutting Management

Summer Harvests:

- Watch for onset of new shoots from the crown even before the previous crop is harvested.
- Varieties will vary in this response. Some have less apical dominance than others.
- In these situations, it is best to harvest before the next growth gets above the mower height.
Alfalfa Cutting Management

Cutting Heights:

- Alfalfa can withstand low cutting heights (2” to 3”) because regrowth starts from crown buds and energy reserves are in the taproot below the crown.

- However, too low will reduce quality (higher fiber in lower stems plus high ash due to increased soil contamination).

- A critical time to raise the cutting height is in the fall for the last harvest (4” to 6”) to help catch snow and/or provide a mulch affect to protect the crowns.
Mismanagement in the fall can lead toward winter injury of alfalfa.

One option is to leave the stand uncut going into the winter

If making a fall harvest, consider the previous cutting management. When cutting intervals are 35 days or less, it is best to avoid harvesting between early September and mid-October; otherwise, make sure there is 45 days between the late summer and fall harvest.

Leave a 4 to 6 inch stubble
Alfalfa Cutting Management

Reducing Risk of Winter Injury

• Proper cutting (see previous slide)

• Variety Selection should be for:
 – Winter hardiness
 – Moderate to high disease resistance

• Soil K levels should be adequate to high
Alfalfa/Grass Mixtures

For hay-only systems, consider late maturing, compatible grasses:
 - Timothy
 - Smooth bromegrass

For high quality haylage mixtures, consider grasses that tolerate early cutting:
 - Late maturing orchardgrass
 - Tall fescue
 - Meadow fescue
 - Reed canarygrass
Alfalfa/Grass Mixtures

To maintain and sustain alfalfa in the mixture:

- Grow on moderate to well drained soil
- Maintain soil pH at 6.7 to 7.0
- Make sure soil P and K levels are adequate for alfalfa (grasses are very competitive for K when soil levels are low)
- Set cutting height for alfalfa (2” to 3”)

A lower cutting or grazing height tends to favor the legume.

For grasses, a low defoliation height removes more leaf area and part of the stored energy reserves; therefore, their regrowth is reduced relative to the regrowth rate of the alfalfa.
Red Clover Cutting Management
Red Clover Cutting Management

Graph showing forage yield (ton DM/ac) across different Wisconsin locations for 4-cut, 3-cut, and 2-cut management.
Red Clover Cutting Management

- Established red clover stands should be harvested at pre-bloom or early bloom for a compromise of quality and yield.
- In the first year, the third harvest during early September will help maintain better stands the following season.
Grass Cutting Management
Grass Cutting Management

(Brink, USDA- Dairy/Forage Research Lab, 2010)
Grass Cutting Management

When in head, quality is dead!
First cutting - Best compromise is to cut at boot to early head emergence
Grass Cutting Management

Effect of cutting time of the first cut on first cut and aftermath yield

Figure 1. Dry matter yields of three orchardgrass varieties harvested each spring at different stages of growth over a 3-year (1960-62) period at West Virginia.
Grass Cutting Management

Effect of number and frequency of harvests of four cool season grasses on annual DM yield and net economic return under different environmental conditions in PA.

<table>
<thead>
<tr>
<th>Species</th>
<th>Harvest schedule</th>
<th>Dry conditions†</th>
<th>Normal to wet conditions†</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>no./yr × interval</td>
<td>DM ton/acre</td>
<td>Economic return $/acre</td>
</tr>
<tr>
<td>Orchardgrass</td>
<td>2 × 70 d</td>
<td>3.97§</td>
<td>88</td>
</tr>
<tr>
<td></td>
<td>3 × 45 d</td>
<td>3.77</td>
<td>97</td>
</tr>
<tr>
<td></td>
<td>3 × 35 d</td>
<td>3.04</td>
<td>97</td>
</tr>
<tr>
<td></td>
<td>4 × 35 d</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Reed canarygrass</td>
<td>2 × 70 d</td>
<td>3.78</td>
<td>96</td>
</tr>
<tr>
<td></td>
<td>3 × 45 d</td>
<td>3.63</td>
<td>97</td>
</tr>
<tr>
<td></td>
<td>3 × 35 d</td>
<td>2.87</td>
<td>108</td>
</tr>
<tr>
<td></td>
<td>4 × 35 d</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Smooth bromegrass</td>
<td>2 × 70 d</td>
<td>4.45</td>
<td>130</td>
</tr>
<tr>
<td></td>
<td>3 × 45 d</td>
<td>3.89</td>
<td>117</td>
</tr>
<tr>
<td></td>
<td>3 × 35 d</td>
<td>2.77</td>
<td>103</td>
</tr>
<tr>
<td></td>
<td>4 × 35 d</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Timothy</td>
<td>2 × 70 d</td>
<td>4.13</td>
<td>106</td>
</tr>
<tr>
<td></td>
<td>3 × 45 d</td>
<td>3.70</td>
<td>88</td>
</tr>
<tr>
<td></td>
<td>3 × 35 d</td>
<td>2.89</td>
<td>87</td>
</tr>
<tr>
<td></td>
<td>4 × 35 d</td>
<td>--</td>
<td>--</td>
</tr>
</tbody>
</table>

† Dry and wet conditions averaged 70 and 135%, respectively, of normal (29.6 in. by 1 Oct.). Reduced plant growth permitted only three harvests to be made from the four-harvest treatment in dry years.

‡ Based on relative value of the harvested forage ($65/ton hay with a forage quality of 16% CP and 60% DDM) minus costs for harvesting ($28/harvest) and fertilization.

§ All values are the mean from two years.

High Quality Grass Cutting Management

Orchardgrass

Reed Canarygrass

Tall and Meadow Fescue

Rye grasses

Tolerant of early first cut
Moderate Quality Grass Cutting Management

Least tolerant of early first cut
Usually need to wait until full head stage
Plant Response to Defoliation Intensity

Timothy

CARBOHYDRATE RESERVES DECREASING

LEAVES INFLOR- ESCENCE INTERNODE STEM INFLOR- ESCENCE EARLY ANTHESIS- SEED
ONLY ELONGATION ELONG- HEADING NEW BASAL FORMING TILLERS INITIATED
ITION BEGINNING ATING EMERGENCE

SAFE TO GRAZE-ONLY LEAVES REMOVED

HAZARDOUS TO CUT OR GRAZE LOW RESERVES AND NO NEW BASAL TILLERS

SAFE TO CUT-HIGH RESERVES AND NEW BASAL TILLERS
Grass Cutting Management

Aftermath Harvests

- Usually 30 to 40 days for OG, RCG, TF, PRG; 40 to 45 days for Tim., SB, meadow fescue

- Nitrogen is key to grass growth either from manure, chemical fertilizer or a combination of both. A shortage of N will drastically slow down growth.

- Growth will also be delayed in periods of hot, dry weather.
Grass Cutting Management

- Low cutting height, especially combined with intensive cutting management, can thin stands relatively quickly.

(Photography credits: Geoffrey Brink, USDA-Dairy/Forage Research Lab, 2010)
Most harvest management decisions are made with little or no information on actual forage nutritional quality.
Which quality values are best for predicting when to harvest?

- Crude protein?
- Neutral Detergent Fiber (NDF) ?
- Acid Detergent Fiber (ADF) ?
- NDF digestibility (NDFd) ?
- Relative Feed Value (RFV) ?
- Relative Forage Quality (RFQ) ?
For high quality forage, target:

- **Legumes (Alfalfa and Red Clover)**
 - ADF – 30% to 32% of DM
 - NDF – 40% to 42% of DM

- **Cool Season Grasses**
 - ADF – 30% to 32% of DM
 - NDF – 50% to 55% of DM
Existing Methods for Predicting Forage Quality in the Field

1. Site-specific forage sampling and testing using NIRS methodology

2. Use of mathematical prediction equations based on plant morphological characteristics and plant height

3. Prediction equations based on weather data especially temperature (growing degree days)
Method 1: Site-Specific Forage Sampling
Method 1: Site-Specific Forage Sampling

- Requires a lot of labor and forage testing
- Expensive
- Potential sampling error
- Best example of use is a scissors-cut program with alfalfa in Wisconsin
Method 2: Prediction equations based on plant morphological characteristics

- Requires some labor but no testing costs
- Several systems have been evaluated
- PEAQ - Predictive Equations for Alfalfa Quality
- Works well with pure alfalfa but not with alfalfa-grass mixtures
- Recent work using methods for predicting alf/grass quality
Method 2: Prediction equations based on plant morphological characteristics

<table>
<thead>
<tr>
<th>Max. alfalfa height, in.</th>
<th>% Grass in the stand (dry matter basis)</th>
<th>10</th>
<th>20</th>
<th>30</th>
<th>40</th>
<th>50</th>
<th>60</th>
<th>70</th>
<th>80</th>
<th>90</th>
</tr>
</thead>
<tbody>
<tr>
<td>14</td>
<td></td>
<td>23.5</td>
<td>26.7</td>
<td>29.9</td>
<td>33.1</td>
<td>36.3</td>
<td>39.5</td>
<td>42.7</td>
<td>45.9</td>
<td>49.1</td>
</tr>
<tr>
<td>15</td>
<td></td>
<td>24.3</td>
<td>27.5</td>
<td>30.7</td>
<td>33.9</td>
<td>37.1</td>
<td>40.3</td>
<td>43.5</td>
<td>46.7</td>
<td>49.9</td>
</tr>
<tr>
<td>16</td>
<td></td>
<td>25.1</td>
<td>28.3</td>
<td>31.5</td>
<td>34.7</td>
<td>37.9</td>
<td>41.1</td>
<td>44.3</td>
<td>47.5</td>
<td>50.7</td>
</tr>
<tr>
<td>17</td>
<td></td>
<td>25.9</td>
<td>29.1</td>
<td>32.3</td>
<td>35.5</td>
<td>38.7</td>
<td>41.9</td>
<td>45.1</td>
<td>48.3</td>
<td>51.5</td>
</tr>
<tr>
<td>18</td>
<td></td>
<td>26.8</td>
<td>30.0</td>
<td>33.2</td>
<td>36.4</td>
<td>39.6</td>
<td>42.8</td>
<td>46.0</td>
<td>49.2</td>
<td>52.4</td>
</tr>
<tr>
<td>19</td>
<td></td>
<td>27.6</td>
<td>30.8</td>
<td>34.0</td>
<td>37.2</td>
<td>40.4</td>
<td>43.6</td>
<td>46.8</td>
<td>50.0</td>
<td>53.2</td>
</tr>
<tr>
<td>20</td>
<td></td>
<td>28.4</td>
<td>31.6</td>
<td>34.8</td>
<td>38.0</td>
<td>41.2</td>
<td>44.4</td>
<td>47.6</td>
<td>50.8</td>
<td>54.0</td>
</tr>
<tr>
<td>21</td>
<td></td>
<td>29.2</td>
<td>32.4</td>
<td>35.6</td>
<td>38.8</td>
<td>42.0</td>
<td>45.2</td>
<td>48.4</td>
<td>51.6</td>
<td>54.8</td>
</tr>
<tr>
<td>22</td>
<td></td>
<td>30.1</td>
<td>33.3</td>
<td>36.5</td>
<td>39.7</td>
<td>42.9</td>
<td>46.1</td>
<td>49.3</td>
<td>52.5</td>
<td>55.7</td>
</tr>
<tr>
<td>23</td>
<td></td>
<td>30.9</td>
<td>34.1</td>
<td>37.3</td>
<td>40.5</td>
<td>43.7</td>
<td>46.9</td>
<td>50.1</td>
<td>53.3</td>
<td>56.5</td>
</tr>
<tr>
<td>24</td>
<td></td>
<td>31.7</td>
<td>34.9</td>
<td>38.1</td>
<td>41.3</td>
<td>44.5</td>
<td>47.7</td>
<td>50.9</td>
<td>54.1</td>
<td>57.3</td>
</tr>
<tr>
<td>25</td>
<td></td>
<td>32.5</td>
<td>35.7</td>
<td>38.9</td>
<td>42.1</td>
<td>45.3</td>
<td>48.5</td>
<td>51.7</td>
<td>54.9</td>
<td>58.1</td>
</tr>
<tr>
<td>26</td>
<td></td>
<td>33.4</td>
<td>36.6</td>
<td>39.8</td>
<td>43.0</td>
<td>46.2</td>
<td>49.4</td>
<td>52.6</td>
<td>55.8</td>
<td>59.0</td>
</tr>
<tr>
<td>27</td>
<td></td>
<td>34.2</td>
<td>37.4</td>
<td>40.6</td>
<td>43.8</td>
<td>47.0</td>
<td>50.2</td>
<td>53.4</td>
<td>56.6</td>
<td>59.8</td>
</tr>
<tr>
<td>28</td>
<td></td>
<td>35.0</td>
<td>38.2</td>
<td>41.4</td>
<td>44.6</td>
<td>47.8</td>
<td>51.0</td>
<td>54.2</td>
<td>57.4</td>
<td>60.6</td>
</tr>
<tr>
<td>29</td>
<td></td>
<td>35.8</td>
<td>39.0</td>
<td>42.2</td>
<td>45.4</td>
<td>48.6</td>
<td>51.8</td>
<td>55.0</td>
<td>58.2</td>
<td>61.4</td>
</tr>
<tr>
<td>30</td>
<td></td>
<td>36.7</td>
<td>39.9</td>
<td>43.1</td>
<td>46.3</td>
<td>49.5</td>
<td>52.7</td>
<td>55.9</td>
<td>59.1</td>
<td>62.3</td>
</tr>
<tr>
<td>31</td>
<td></td>
<td>37.5</td>
<td>40.7</td>
<td>43.9</td>
<td>47.1</td>
<td>50.3</td>
<td>53.5</td>
<td>56.7</td>
<td>59.9</td>
<td>63.1</td>
</tr>
<tr>
<td>32</td>
<td></td>
<td>38.3</td>
<td>41.5</td>
<td>44.7</td>
<td>47.9</td>
<td>51.1</td>
<td>54.3</td>
<td>57.5</td>
<td>60.7</td>
<td>63.9</td>
</tr>
<tr>
<td>33</td>
<td></td>
<td>39.1</td>
<td>42.3</td>
<td>45.5</td>
<td>48.7</td>
<td>51.9</td>
<td>55.1</td>
<td>58.3</td>
<td>61.5</td>
<td>64.7</td>
</tr>
<tr>
<td>34</td>
<td></td>
<td>40.0</td>
<td>43.2</td>
<td>46.4</td>
<td>49.6</td>
<td>52.8</td>
<td>56.0</td>
<td>59.2</td>
<td>62.4</td>
<td>65.6</td>
</tr>
<tr>
<td>35</td>
<td></td>
<td>40.8</td>
<td>44.0</td>
<td>47.2</td>
<td>50.4</td>
<td>53.6</td>
<td>56.8</td>
<td>60.0</td>
<td>63.2</td>
<td>66.4</td>
</tr>
</tbody>
</table>
Method 3: Prediction equations based on growing degree days

- Can be assessed without field or forage sampling and testing
- GDD is good for first cut but is not reliable when water becomes limiting factor which often occurs in summer growth.
- For alfalfa, found 700 to 750 accumulated GDD at 41°F to reach a NDF of 40%
Method 3: Prediction equations based on growing degree days

Relationship of GDD and NDF

Growing Degree Days

NDF (%)
Method 3: Prediction equations based on growing degree days

Relationship of GDD and NDF

- Field A
- Field B
- Field C
Combining Methods for Predicting Forage Quality

Step 1: Establish an ADF or NDF baseline by sampling the site 2 to 3 weeks before the “normal” harvest time.

Step 2: Use GDD’s in combination with baseline to predict optimum harvest date.
Changes in NDF During Spring Growth

<table>
<thead>
<tr>
<th>Location</th>
<th>Year</th>
<th>NDF/day</th>
<th>NDF/10GDD</th>
</tr>
</thead>
<tbody>
<tr>
<td>S. Burlington</td>
<td>2002</td>
<td>0.70</td>
<td>0.45</td>
</tr>
<tr>
<td></td>
<td>2003</td>
<td>0.92</td>
<td>0.52</td>
</tr>
<tr>
<td>Average</td>
<td></td>
<td>0.75</td>
<td>0.49</td>
</tr>
<tr>
<td>E. Montpelier</td>
<td>2002</td>
<td>0.67</td>
<td>0.55</td>
</tr>
<tr>
<td></td>
<td>2003</td>
<td>0.69</td>
<td>0.43</td>
</tr>
<tr>
<td>Average</td>
<td></td>
<td>0.75</td>
<td>0.49</td>
</tr>
</tbody>
</table>

All Grasses

<table>
<thead>
<tr>
<th>Location</th>
<th>Year</th>
<th>NDF/day</th>
<th>NDF/10GDD</th>
</tr>
</thead>
<tbody>
<tr>
<td>S. Burlington</td>
<td>2002</td>
<td>0.51</td>
<td>0.36</td>
</tr>
<tr>
<td></td>
<td>2003</td>
<td>0.54</td>
<td>0.35</td>
</tr>
<tr>
<td>Average</td>
<td></td>
<td>0.52</td>
<td>0.35</td>
</tr>
</tbody>
</table>

Alfalfa

<table>
<thead>
<tr>
<th>Location</th>
<th>Year</th>
<th>NDF/day</th>
<th>NDF/10GDD</th>
</tr>
</thead>
<tbody>
<tr>
<td>E. Montpelier</td>
<td>2002</td>
<td>0.51</td>
<td>0.36</td>
</tr>
<tr>
<td></td>
<td>2003</td>
<td>0.54</td>
<td>0.35</td>
</tr>
<tr>
<td>Average</td>
<td></td>
<td>0.52</td>
<td>0.35</td>
</tr>
</tbody>
</table>

Jimenez-Serrano and Bosworth, 2004, Un. of Vermont
The rate in change of ADF was more consistent than NDF across species and cultivars.
Changes in ADF During Spring Growth

<table>
<thead>
<tr>
<th>Location</th>
<th>Year</th>
<th>ADF/day</th>
<th>ADF/10GDD</th>
</tr>
</thead>
<tbody>
<tr>
<td>S. Burlington</td>
<td>2002</td>
<td>0.40</td>
<td>0.28</td>
</tr>
<tr>
<td></td>
<td>2003</td>
<td>0.53</td>
<td>0.30</td>
</tr>
<tr>
<td>Average</td>
<td></td>
<td>0.44</td>
<td>0.29</td>
</tr>
<tr>
<td>E. Montpelier</td>
<td>2002</td>
<td>0.37</td>
<td>0.31</td>
</tr>
<tr>
<td></td>
<td>2003</td>
<td>0.46</td>
<td>0.28</td>
</tr>
<tr>
<td>Average</td>
<td></td>
<td>0.46</td>
<td>0.31</td>
</tr>
</tbody>
</table>

All Grasses

<table>
<thead>
<tr>
<th>Location</th>
<th>Year</th>
<th>ADF/day</th>
<th>ADF/10GDD</th>
</tr>
</thead>
<tbody>
<tr>
<td>E. Montpelier</td>
<td>2002</td>
<td>0.42</td>
<td>0.30</td>
</tr>
<tr>
<td></td>
<td>2003</td>
<td>0.50</td>
<td>0.32</td>
</tr>
<tr>
<td>Average</td>
<td></td>
<td>0.46</td>
<td>0.31</td>
</tr>
</tbody>
</table>

Alfalfa

Jimenez-Serrano and Bosworth, 2004, Un. of Vermont
Predicting Quality of Mixtures

- ADF
On-Farm Field Evaluations

- Collected a “baseline” sample in mid-May and combined with GDD in prediction model to forecast when to cut.
- Took a second sample at harvest time.
- Evaluated how well the prediction models compared to the actual quality results at harvest time.
On-Farm Field Evaluations (2002 – 04)
Predicting NDF for Alfalfa

- within 5% of measured NDF using the prediction model based on time (days)
- within 5% of measured NDF using the prediction model based on cumulative GDD
- greater than 5% of measured NDF (unacceptable)

Bosworth, 2004, Un. of Vermont
On-Farm Field Evaluations (2002 – 04)

Predicting ADF for Alfalfa

On-Farm Alfalfa Fields

- within 5% of measured ADF using the prediction model based on time (days)
- within 5% of measured ADF using the prediction model based on cumulative GDD
- greater than 5% of measured ADF (unacceptable)

Bosworth, 2004, Un. of Vermont
On-Farm Field Evaluations
Predicting NDF for Grasses and Mixtures

- within 5% of measured NDF using the prediction model based on time (days)
- within 5% of measured NDF using the prediction model based on cumulative GDD
X - greater than 5% of measured NDF (unacceptable)

Bosworth, 2004, Un. of Vermont
On-Farm Field Evaluations
Predicting ADF for Grasses and Mixtures

Bosworth, 2004, Un. of Vermont

- within 5% of measured ADF using the prediction model based on time (days)
- within 5% of measured ADF using the prediction model based on cumulative GDD
X - greater than 5% of measured ADF (unacceptable)
The combination method of collecting a baseline sample in mid-May and then using growing degree days to predict the changes in ADF and NDF may be a viable method.

Proper sampling the baseline is critical to minimize error.

There appeared to be less variation and better predictability using ADF instead of NDF for the legume/grass mixtures.

 Probably the best benefit is just the awareness of how temperature can drastically affect when the forages need to be harvested.